当前位置: 首页新书简介 › 材料科学

Oxide Nanostructures : Growth, Microstructures, and Properties

作者: Srivastava, Avanish Kumar (EDT) 出版社: Pan Stanford Publishing Pte Ltd
ISBN: 9789814411356分类号: TB383 /O98
出版时间: 2014-04-15有311人浏览

Oxide Nanostructures : Growth, Microstructures, and Properties

[Book Description]

Nanomaterials, their synthesis, and property studies have been an obsession with modern current physicists, chemist, and materials scientists for their vast array of technological implications and the remarkable way their properties are modified or enhanced when the size dimensions are reduced to the realm of nanometers. Although nanomaterials, for a lot of practical purposes have been in existence since the remotest past of civilization, it is only in the last few decades that the field has been gaining the attention that it deserves from the scientific and industrial fraternity. A lot of this has to do with the immense improvement we made in tools to study and characterize these materials. Metal oxides have been one of the well documented and hottest branches of nanomaterials revolution with oxides such as TiO2, ZnO, CuO, Fe3O4, Cr2O3, Co3O4, MnO2 and many more being an integral part to a variety of technological advancements and industrial applications.From green power issues like photovoltaic cells to rechargeable batteries, from drug delivery agents to antimicrobial and cosmetic products, from superconductor materials to semiconductors and insulators, metal oxides have been omnipresent in terms of both commercial prerogatives and research highlights. This book is solely devoted towards this special section of nanomaterials with an aim to partially access the science pertaining to the oxides of metals.

[Table of Contents]

Foreword                                           xv
C.N.R. Rao
Foreword xvii
Ramesh Chandra Budhani
Foreword xix
Anand Mohan
Foreword xxi
Dr. Simon J. Holland
Preface xxv
1 Metal Oxide Nanomaterials: An Overview 1 (98)
Kajal Kumar Dey
Avanish Kumar Srivastava
1.1 Initiation 1 (2)
1.2 Orientation with the Nanomaterials 3 (6)
1.3 Metal Oxide Nanomaterials: Why Have 9 (19)
They Become Indispensable?
1.3.1 Photocatalytic Activity 9 (1)
1.3.2 Photovoltaic Application 10 (2)
1.3.3 Catalysis 12 (2)
1.3.4 Sensing Applications 14 (1)
1.3.5 Li-Ion Batteries 15 (1)
1.3.6 Capacitors 16 (2)
1.3.7 Biophysical Functionalities 18 (1)
1.3.8 Nanofluid 19 (1)
1.3.9 Transparent Conducting Oxides 20 (1)
1.3.10 Superconductivity 21 (1)
1.3.11 Antimicrobial Agent 21 (1)
1.3.12 Thermochromic Materials 21 (1)
1.3.13 Electrochromic Materials 22 (1)
1.3.14 Piezoelectric Materials 23 (1)
1.3.15 Luminescence Materials 23 (1)
1.3.16 Field Emitters 24 (1)
1.3.17 Lasers 24 (1)
1.3.18 Switches 25 (1)
1.3.19 Memresistor 25 (1)
1.3.20 Chromatographic Support 25 (1)
1.3.21 Fuel Cells 26 (1)
1.3.22 Optical Recording and Other 26 (1)
Information Storage Devices
1.3.23 Abrasives and Polishing Agents 26 (1)
1.3.24 Ultraviolet Filtration 27 (1)
1.4 Various Synthesis Strategies for 28 (31)
Metal Oxide Nanomaterials
1.4.1 Physical Vapor Deposition 30 (1)
1.4.1.1 Thermal evaporation 31 (1)
1.4.1.2 Pulsed laser deposition 32 (1)
1.4.1.3 Cathodic arc deposition 33 (1)
1.4.1.4 Sputtering deposition 34 (1)
1.4.1.5 Molecular beam epitaxy 35 (1)
1.4.2 Chemical Vapor Deposition 36 (1)
1.4.3 Atomic Layer Deposition 37 (1)
1.4.4 Spray Pyrolysis 38 (1)
1.4.5 Thermochemical or Flame 39 (2)
Deposition of Metal Organic Precursors
1.4.6 Chemical/Solution Approach 41 (1)
1.4.6.1 Coprecipitation 41 (2)
1.4.6.2 Hydrothermal/solvothermal 43 (2)
approach
1.4.6.3 Sol-gel approach 45 (2)
1.4.6.4 Microemulsions/micelles approach 47 (2)
1.4.6.5 Thermolysis/thermochemical 49 (1)
decomposition
1.4.6.6 Electrodeposition 50 (1)
1.4.6.7 Oxidation and reduction 51 (1)
1.4.6.8 Metathesis 52 (1)
1.4.6.9 Combustion synthesis 53 (1)
1.4.6.10 Biomimetic approach 54 (1)
1.4.6.11 Sonochemical approach 55 (1)
1.4.6.12 Microwave heating 56 (1)
1.4.7 Milling 57 (1)
1.4.8 Lithography 58 (1)
1.5 Nature of Bonding and Defects 59 (4)
1.6 Structural Characterization Tools for 63 (13)
Metal Oxide Nanomaterials
1.6.1 X-Ray Diffraction 63 (2)
1.6.2 Small Angle X-Ray Scattering 65 (1)
1.6.3 Scanning Electron Microscopy 65 (1)
1.6.4 Transmission Electron Microscopy 66 (1)
1.6.5 Scanning Probe Microscopy 67 (1)
1.6.6 Differential Scanning Calorimetry 68 (1)
1.6.7 Superconducting Quantum 69 (1)
Interference Magnetometry
1.6.8 Ultraviolet-Visible Spectroscopy 69 (1)
1.6.9 Secondary Ion Mass Spectroscopy 70 (1)
1.6.10 Bruner-Emett--Teller Gas 70 (1)
Adsorption Surface Area Measurement and
Pore Structure Analysis
1.6.11 X-Ray Photoelectron Spectroscopy 71 (1)
1.6.12 Raman Spectroscopy 71 (2)
1.6.13 Fourier Transform Infrared 73 (1)
Spectroscopy
1.6.14 Electron Paramagnetic 74 (1)
Resonance/Electron Spin Resonance
1.6.15 Luminescence Spectroscopy 74 (2)
1.7 The Others (Non-Metal Oxides) 76 (1)
1.8 Future Prospects for Metal Oxide 77 (22)
Nanomaterials
2 Pulsed Laser Deposition of Nanostructured 99 (16)
Oxides for Emerging Applications
Carlo S. Casari
Andrea Li Bassi
2.1 Introduction 100 (1)
2.2 Pulsed Laser Deposition of Oxides 100 (10)
with Tailored Properties
2.2.1 Deposition Parameters Affecting 101 (3)
Film Growth
2.2.2 Experimental Apparatus 104 (1)
2.2.3 Tuning of Morphological 105 (1)
Properties of Oxides
2.2.4 Tuning Structural Properties and 106 (3)
Oxide Phase
2.2.5 First Stages of Film Growth 109 (1)
2.3 Applications 110 (5)
3 Metastable Phase Selection and 115 (38)
Low-Temperature Plasticity in Chemically
Synthesized Amorphous Al2O3-ZrO2 and
Al2O3-Y2O3
Ashutosh S. Gandhi
Arindam Paul
Shailendra Singh Shekhawat
Umesh Waghmare
Vikram Jayaram
3.1 Introduction 115 (3)
3.2 Metastable Phase Selection in 118 (6)
Al2O3--ZrO2 and Al2O3--Y2O3
3.2.1 Phase Selection in Al2O3--ZrO2 119 (2)
System
3.2.2 Phase Selection in Al2O3--Y2O3 121 (3)
System
3.3 Consolidation of Amorphous Powders of 124 (10)
Al2O3--ZrO2 and Al2O3--Y2O3
3.4 Plastic Deformation of Glassy 134 (6)
Al2O3--ZrO2 and Al2O3--Y203
3.5 Modelling of the Structure of 140 (6)
Amorphous Al2O3--Y2O3
3.6 Concluding Remarks 146 (7)
4 Porous and Hollow Oxide Nanostructures: 153 (48)
Synthesis, Stability and Applications
Erumpukuthickal Ashokkumar Anumol
Narayanan Ravishankar
4.1 Introduction 153 (1)
4.2 Porous Structure: Definition 154 (1)
4.3 Synthesis Methods for Porous 154 (12)
Structures
4.3.1 Template-Assisted Methods 155 (1)
4.3.1.1 Surfactant template 155 (4)
4.3.1.2 Emulsion templating 159 (2)
4.3.2 Template-Less Methods 161 (1)
4.3.2.1 Hydrothermal/solvothermal 161 (2)
synthesis
4.3.2.2 Combustion/annealing synthesis 163 (1)
4.3.2.3 Aggregation 164 (2)
4.3.2.4 Anodization 166 (1)
4.4 Applications of Porous Structures 166 (3)
4.4.1 Drug Delivery 166 (1)
4.4.2 Catalysis and Sensing 167 (1)
4.4.3 Li-Ion Batteries 168 (1)
4.4.4 Solar Cells 168 (1)
4.4.5 Templates 169 (1)
4.5 Hollow Structures: Definition 169 (1)
4.6 Synthesis Methods for Hollow 170 (17)
Structures
4.6.1 Template-Assisted Methods 170 (1)
4.6.1.1 Polymeric template 171 (3)
4.6.1.2 Silica template 174 (1)
4.6.1.3 Other oxide materials as 175 (2)
template
4.6.1.4 Soft template 177 (2)
4.6.2 Template-Less Methods 179 (1)
4.6.2.1 Kirkendall effect 179 (3)
4.6.2.2 Ostwald ripening 182 (2)
4.6.2.3 Other methods 184 (1)
4.6.2.4 Hollow nanostructures from 184 (3)
nanoparticle aggregates
4.7 Applications of Hollow Nanostructures 187 (2)
4.7.1 Drug Delivery 187 (1)
4.7.2 Li-lon Battery Anode 187 (1)
4.7.3 Catalysis and Sensing 188 (1)
4.8 Conclusions 189 (12)
5 Doped Tin Oxide Nanomaterials for 201 (16)
Chlorine and Hydrogen Gas Detection
Allen Chaparadza
Hoang Tran
Shankar B. Rananavare
5.1 Introduction 201 (2)
5.2 Synthesis and Characterization of 203 (5)
Nanomaterial-Based Devices for Chlorine
and Hydrogen Sensing
5.2.1 Preparation of Li(p-Type) and Sb 203 (1)
(n-Type)-Doped SnO2 Nanoparticles
5.2.2 n-Doped Tin Oxide Nanowires 204 (1)
5.2.3 p-Doped Tin Oxide Nanowires 204 (1)
5.2.4 Characterization of Li-and 205 (3)
Sb-Doped SnO2
5.3 Conduction Mechanisms in n- and 208 (2)
p-Doped Nanoparticles
5.4 Sensors for Cl2 and H2 Detection 210 (5)
5.4.1 Sb-Doped SnO2 for Chlorine 211 (2)
Detection
5.4.2 Li-doped SnO2 for Hydrogen 213 (2)
Detection
5.5 Conclusions and Future Outlook 215 (2)
6 Titanium Oxide Nano- and 217 (38)
Submicron-Structured Coating for Ti and
Ti-Related Bio-Implants
Shampa Aich
Banasri Roy
6.1 Introduction 218 (2)
6.2 Synthesis Routes 220 (2)
6.3 Characterization Techniques 222 (9)
6.3.1 Biological Characterization 222 (3)
6.3.2 Physical Characterization 225 (1)
6.3.2.1 Thickness 225 (1)
6.3.2.2 Structural analyses 226 (1)
6.3.2.3 Chemical composition and 227 (1)
chemical depth profiling
6.3.2.4 Morphology and microstructure 228 (2)
6.3.2.5 Surface contact/energy and 230 (1)
wettability
6.3.3 Mechanical Characterization 230 (1)
6.4 Biocompatibility of Titanium Oxide 231 (10)
Coatings
6.4.1 Blood Compatibility 233 (1)
6.4.1.1 Blood compatibility of titanium 233 (1)
oxide compared to other coating
materials
6.4.1.2 Effect of thickness 234 (1)
6.4.1.3 Effect of chemical nature 235 (1)
6.4.1.4 Effect of phase 236 (1)
6.4.1.5 Effect of surface 237 (1)
6.4.2 Bone compatibility 238 (1)
6.4.2.1 Effect of roughness and porosity 238 (1)
6.4.2.2 Effect of surface energy and 239 (1)
wettability
6.4.2.3 Using seeds 240 (1)
6.4.2.4 Effect of phase 241 (1)
6.5 Conclusions 241 (14)
7 Metal Oxide Nanostructured Films for 255 (28)
Photovoltaic Applications
S.K. Tripathi
7.1 Introduction to Nanotechnology 255 (3)
7.1.1 Metal Oxide Nanomaterials 257 (1)
7.1.2 Titanium Dioxide as a Material 258 (1)
7.2 Crystal Structure of TiO2 258 (2)
7.3 Electron Transport in TiO2 260 (2)
7.4 Introduction to Photovoltaics 262 (4)
7.4.1 Solar Irradiation 264 (1)
7.4.2 Photovoltaic Characterization 265 (1)
7.5 Dye-Sensitized Solar Cell 266 (9)
7.5.1 Metal Oxide Thin Films for 268 (1)
Dye-Sensitized Solar Cell
7.5.2 TiO2 Photoelectrode with 269 (1)
Scattering Layer
7.5.3 Metal-Doped Titania (TiO2) 270 (2)
Photoelectrode
7.5.4 Core-Shell Composite of Titania 272 (2)
(TiO2) and Other Metal Oxides for
Photoelectrode
7.5.5 TiO2 Coupled with Other 274 (1)
Semiconductors
7.6 Synthesis Techniques 275 (8)
7.6.1 Hydrothermal Synthesis 275 (1)
7.6.2 Combustion 275 (1)
7.6.3 Gas Phase Methods 276 (1)
7.6.4 Microwave Synthesis 276 (1)
7.6.5 Sol-Gel Processing 277 (6)
8 Nanostructured Materials as Nanoprobes 283 (40)
for Bioimaging Applications
S.D. Geethanjali
A. Vadivel Murugan
8.1 Overview 283 (1)
8.2 Introduction 284 (1)
8.3 Nanoprobes for Bioimaging Applications 285 (29)
8.3.1 Nanostructured Materials as 285 (1)
Nanoprobes
8.3.1.1 Size of the nanoprobe 285 (1)
8.3.1.2 Nanoparticle shape 286 (1)
8.3.1.3 Nanoparticle composition 287 (1)
8.3.1.4 Nanomaterial functionalization 287 (2)
8.3.1.5 Nanoprobe--biomolecule 289 (1)
interaction
8.3.1.6 Drug delivery route and in vivo 290 (1)
targeting
8.3.2 Conventional Nanoprobes 290 (1)
8.3.2.1 Gold-based nanomaterials 291 (4)
8.3.2.2 Semiconductor quantum dots 295 (1)
8.3.2.3 Photodynamic therapy 296 (1)
8.3.3 Oxide--Based Bioimaging Probes 297 (1)
8.3.3.1 Iron oxide-based magnetic 297 (1)
bioimaging probes
8.3.3.2 Rare earth oxide-based 298 (1)
nanoprobes
8.3.3.3 Silica-based nanoprobes 299 (1)
8.3.3.4 Zinc oxide (ZnO)-based 299 (1)
nanoprobes
8.3.4 Newer Generation Nanoprobes 300 (1)
8.3.4.1 III-V semiconductor nanoprobes 300 (1)
8.3.4.2 Lanthanide-based nanoprobes 301 (10)
8.3.4.3 Carbon-based nanomaterials as 311 (3)
nanoprobes
8.4 Conclusion 314 (9)
9 Band Energy and Crystal Structure 323 (22)
Employing Density Functional Theory
Piyush Dua
Avanish Kumar Srivastava
9.1 Importance of Oxide Nanostructures 323 (4)
9.2 Zinc Oxide Nanostructures 327 (2)
9.2.1 1D ZnO Nanostructures 327 (1)
9.2.2 Stability of Various ZnO 1D 328 (1)
Nanostructures
9.2.3 Geometric and Electronic 329 (1)
Structures of Pristine ZnO [6,0) SWNT
9.3 TiO2 Nanostructures 329 (5)
9.3.1 TiO2 Nanosheets 332 (2)
9.4 Summary 334 (11)
10 Paramagnetic Lattice Defects in Natural 345 (26)
Crystalline Quartz
Shin Toyoda
10.1 Introduction 346 (1)
10.2 Paramagnetic Centers Observable in 347 (4)
Natural Crystalline Quartz
10.2.1 Aluminum Hole Center 347 (1)
10.2.2 Germanium Centers 348 (1)
10.2.3 Titanium Centers 349 (1)
10.2.4 E'1 Center 349 (2)
10.3 Formation of the E'1 Center 351 (3)
10.4 Decay of Oxygen Vacancies 354 (1)
10.5 Formation of Oxygen Vacancies 355 (5)
10.6 Applications to Provenance Research 360 (2)
10.7 Impurity Centers 362 (3)
10.8 Summary 365 (6)
11 ZnO Nanoparticles: Defect Structure, 371
Space-Charge Depletion Layer, and
Core--Shell Model
Emre Erdem
Rudiger-A. Eichel
11.1 Introduction 371

[关闭窗口]