当前位置: 首页新书简介 › 生物/医学/农业/环境科学

Chemical Processes for a Sustainable Future : Fabrication of Functional Nanoshells

作者: Trevor Letcher , Janet Scott , Darrell Patterson 出版社: Royal Society Of Chemistry
ISBN: 9781849739757分类号: X78 /C517a
出版时间: 2014-12-15有351人浏览

Chemical Processes for a Sustainable Future : Fabrication of Functional Nanoshells

[Book Description]

This comprehensive book approaches sustainability from two directions, the reduction of pollution and the maintaining of existing resources, both of which are addressed in a thorough examination of the main chemical processes and their impact. Divided into five sections, each introduced by a leading expert in the field, the book takes the reader through the various types of chemical processes, demonstrating how we must find ways to lower the environmental cost (of both pollution and contributions to climate change) of producing chemicals. Each section consists of several chapters, presenting the latest facts and opinion on the methodologies being adopted by the chemical industry to provide a more sustainable future. A follow-up to Materials for a Sustainable Future (Royal Society of Chemistry 2012), this book will appeal to the same broad readership - industrialists and investors; policy makers in local and central governments; students, teachers, scientists and engineers working in the field; and finally editors, journalists and the general public who need information on the increasingly popular concepts of sustainable living.

[Table of Contents]
About the Editors                                  xxiii
Introduction
  Chapter 1 General Concepts in Sustainable        3    (18)
  Chemical Processes
          Darrell Alec Patterson
          Janet L. Scott
      1.1 What is a Sustainable Chemical           3    (3)
      Process?
      1.2 The Principles of Green Chemistry and    6    (3)
      Green Engineering
        1.2.1 The Twelve Principles of Green       6    (2)
        Chemistry
        1.2.2 The Twelve Principles of Green       8    (1)
        Engineering
      1.3 The Waste Management Hierarchy for       9    (2)
      Process Selection
      1.4 Taking a Life Cycle Approach             11   (2)
      1.5 Common Process Approaches to Increase    13   (2)
      Sustainability
        1.5.1 Replacing Batch with Continuous      13   (2)
        or Flow Processes
        1.5.2 Process Intensification              15   (1)
      1.6 Outline of the Approach taken in the     15   (1)
      Following Chapters
      References                                   16   (5)
Part A:
  Chemical Transformations
    Chapter 2 Overview: Chemical Transformations   21   (7)
          Janet L. Scott
        2.1 Introduction                           21   (2)
        2.2 Processes to Facilitate Chemical       23   (2)
        Transformation
        2.3 Examples of Chemical                   25   (1)
        Transformations and Processes
        References                                 26   (2)
    Chapter 3 Analysis and Optimisation of         28   (21)
    Continuous Processes
          Nicholas Holmes
          Richard A. Bourne
        3.1 Introduction to Continuous             28   (1)
        Processing with On-line Analysis
        3.2 Spectroscopic Methods                  29   (1)
        3.2.1 Infrared Spectroscopy                29   (1)
        3.2.2 Nuclear Magnetic Resonance           31   (1)
        Spectroscopy
        3.2.3 Ultraviolet-Visible Spectroscopy     33   (1)
        3.2.4 Raman Spectroscopy                   33   (1)
        3.2.5 Near Infrared Spectroscopy           33   (1)
        3.3 Chromatographic Methods                34   (1)
        3.3.1 Gas Chromatography                   35   (1)
        3.3.2 High-Performance Liquid              36   (1)
        Chromatography
        3.4 Mass Spectrometry                      37   (1)
        3.5 Automated Optimisation using           38   (1)
        Continuous Systems
        3.5.1 Self-Optimisation                    38   (1)
        3.5.2 Statistical and Kinetic Modelling    41   (1)
        3.6 Conclusions and Future Directions      42   (1)
        References                                 43   (6)
  Processes to Facilitate Chemical
  Transformations
    Chapter 4 Sustainable Heterogeneous            49   (35)
    Catalytic Reactions for the Fine and Pharma
    Industry
          Felicity Roberts
          Klaus Hellgardt
        4.1 Sustainable Processes                  49   (1)
        4.2 Sustainable Reaction Engineering       50   (2)
        4.3 Intensified Catalytic Reactors         52   (2)
        4.4 A More Sustainable Fine and            54   (1)
        Pharmaceutical Industry
        4.4.1 Challenges Faced by the Fine and     54   (1)
        Pharmaceutical Industry
        4.4.2 Amide Formation, Avoiding Poor       58   (1)
        Atom Economy Reagents
        4.4.3 OH Activation for Nucleophilic       65   (1)
        Substitution
        4.4.4 Reduction of Amides to Amines        68   (1)
        4.4.5 Oxidation/epoxidation reactions      70   (7)
        without the use of chlorinated solvents
        4.5 Conclusions                            77   (1)
        References                                 78   (6)
    Chapter 5 Hydrodynamic Cavitation Processing   84   (59)
          Frederick C. Michel Jr
          Oleg Kozyuk
        5.1 Introduction                           84   (2)
        5.2 Principles of Hydrodynamic             86   (2)
        Cavitation Processes
        5.3 Specific Energy Use during             88   (3)
        Cavitation
        5.4 Mechanisms of Comminution and          91   (4)
        Effects on Chemical Reaction in the
        Cavitation Bubble Zone
        5.5 Homogenization and Emulsification      95   (7)
        Processes
        5.6 Particle Size                          102  (5)
        Reduction/De-agglomeration
        5.7 Cavitation Synthesis of                107  (12)
        Nanostructured Materials and Catalysts
        5.8 Hydrodynamic Cavitation as a Tool      119  (12)
        to Control Properties of Active
        Pharmaceutical Ingredients
        5.9 Applications of Hydrodynamic           131  (1)
        Cavitation in Bioprocessing
        5.9.1 Use of Cavitation to Improve Corn    131  (1)
        Ethanol Production
        5.9.2 Use of Cavitation to Reduce          134  (1)
        Particle Size Distribution during
        Anaerobic Digestion of Wastewater
        Treatment Plant Primary and Secondary
        Sludge
        5.9.3 Continuous Biodiesel Production      136  (3)
        using Controlled Flow Cavitation
        5.10 Hydrodynamic Cavitation, a Process    139  (1)
        Tool for a Sustainable Future
        References                                 139  (4)
    Chapter 6 Microwave Chemistry                  143  (15)
          Yvonne Wharton
        6.1 Introduction                           143  (2)
        6.2 Microwave Assisted Organic Reactions   145  (1)
        6.3 Large-scale Microwave Synthesis as     146  (1)
        a Tool for Sustainable Chemistry
        6.3.1 Scale Up of Microwave Synthesis      146  (1)
        6.3.2 Scale Up Using Flow Chemistry        147  (1)
        6.4 Microwave Assisted Synthesis Under     148  (1)
        Continuous Flow Conditions
        6.5 Case Studies                           149  (1)
        6.5.1 Parallel Synthesis                   151  (1)
        6.5.2 Transition Metal Free Suzuki and     152  (1)
        Sonogashira Coupling Reactions
        6.5.3 Multi-component Reactions            152  (1)
        6.5.4 Comparison of Energy Consumption     153  (2)
        in a Benzamide Hydrolysis
        6.6 Conclusions                            155  (1)
        References                                 155  (3)
    Chapter 7 Solar Photochemical Manufacturing    158  (37)
    of Fine Chemicals: Historical Background,
    Modem Solar Technologies, Recent
    Applications and Future Challenges
          Saira Mumtaz
          Christian Sattler
          Michael Oelgem?ller
        7.1 Introduction to Synthetic Organic      158  (4)
        Photochemistry
        7.2 Early History of Solar                 162  (1)
        Photochemistry
        7.3 Solar Technology                       163  (1)
        7.3.1 Non-Concentrating Reactors           164  (1)
        7.3.2 Compound Parabolic Collectors        164  (1)
        (CPC)
        7.3.3 Concentrating Reactors               165  (4)
        7.4 Solar Photochemical Production of      169  (1)
        Fine Chemicals
        7.4.1 Solar Reactions in Non- to           169  (1)
        Low-concentrating Reactors
        7.4.2 Solar Reactions in                   172  (1)
        Moderately-Concentrating Reactors
        7.4.3 Solar Reactions in                   178  (1)
        Highly-Concentrating Reactors
        7.4.4 Solar Reactor Comparison Studies     181  (3)
        7.5 Summary, Conclusion and Outlook        184  (2)
        Acknowledgements                           186  (1)
        References                                 187  (8)
  Examples of Chemical Transformations and
  Processes
    Chapter 8 The Sustainable Synthesis of         195  (64)
    Methanol - Renewable! Energy, Carbon
    Dioxide and an Anthropogenic Carbon Cycle
          Robin J. White
        8.1 Introduction                           195  (3)
        8.2 The Hydrogen Economy: Sources and      198  (5)
        Limitations
        8.3 Renewable Electricity Provision:       203  (3)
        The Challenge of Intermittency and
        Northern European Ambitions
        8.4 A Methanol-based Economy and a         206  (5)
        Viable Hydrogen Energy Carrier?
        8.5 Methanol Synthesis                     211  (1)
        8.5.1 Synthesis of Dimethyl Ether          214  (1)
        8.5.2 Synthesis of Associated              215  (2)
        Hydrocarbons: Accessing Higher Fuels
        from Methanol
        8.6 Carbon Dioxide Capture,                217  (3)
        Concentration and Purification
        8.7 Sustainable Hydrogen and Syn-gas       220  (1)
        Production
        8.7.1 High Temperature Electrolysis        221  (1)
        8.7.2 Fossil Fuel Decarbonisation          224  (1)
        8.8 Methane as a Fossil Bridge in the      225  (1)
        Methanol Economy
        8.8.1 Homogeneous Catalysis                226  (1)
        8.8.2 Heterogeneous Catalysis              227  (1)
        8.8.3 (Oxidative) Bi-reforming             230  (1)
        Approaches
        8.9 Methanol as a Hydrogen and Energy      231  (1)
        Vector
        8.9.1 Catalysts for Dehydrogenation        231  (1)
        8.9.2 Direct Methanol Fuel Cells:          234  (2)
        Liquid Electrical Energy Carriers
        8.10 Commercial Examples                   236  (3)
        8.11 Summary and Outlook                   239  (4)
        References                                 243  (16)
    Chapter 9 Sustainable Nanotechnology:          259  (29)
    Preparing Nanomaterials from Benign and
    Naturally Occurring Reagents
          O.A. Sadik
          I. Yazgan
          V. Kariuki
        9.1 Introduction                           259  (1)
        9.2 Sustainability and Nanomaterials       260  (1)
        9.2.1 Minimally Toxic Quantum Dots         261  (1)
        9.2.2 'Green Gold'                         263  (1)
        9.2.3 'Green Silver'                       264  (1)
        9.2.4 Green Graphene Nanosheets            265  (1)
        9.2.5 Biomass Extracts as Precursor for    265  (1)
        the Synthesis of Nanomaterials
        9.2.6 Safer-by-Design (SbD) Concept        266  (1)
        9.2.7 Microwave Mediated Synthesis of      268  (1)
        Nanomaterials
        9.2.8 Life Cycle Assessment                269  (1)
        9.3 Nanostructured Poly(amic) Acid         270  (1)
        Membranes: A Case Study
        9.3.1 PAA for Membrane Filtration          272  (1)
        9.3.2 Experimental Control of Pore Size    272  (1)
        9.3.3 Sustainable by Design using          275  (7)
        Chitosan-PAA System
        9.4 Conclusions                            282  (1)
        Acknowledgements                           282  (1)
        References                                 283  (5)
    Chapter 10 New Chemical Processes aimed at     288  (29)
    Sustainable Development in Brazil
          Telma Teixeira Franco
          Ricardo Baldassin Jr
        10.1 Introduction                          288  (3)
        10.2 A Sustainable Chemical Process        291  (2)
        10.3 Sugarcane and other Feedstocks in     293  (8)
        Brazil
        10.4 Biorefineries                         301  (1)
        10.4.1 Fast Pyrolysis and Solvent          301  (1)
        Liquefaction
        10.4.2 Hydrolysis                          302  (1)
        10.4.3 Fermentation to Alcohols, Lipids    304  (1)
        and Organic Acids
        10.4.4 Alcohol Chemistry and Polymers      306  (1)
        from Bioethanol
        10.4.5 Production of Biodegradable         307  (1)
        Plastic in Brazil
        10.4.6 Production of Amino Acids from      309  (1)
        Sugar
        10.5 Conclusions and Comments              310  (1)
        References                                 311  (6)
Part B:
  Biochemical Transformations and Reactors
    Chapter 11 Overview: Biochemical               317  (3)
    Transformations and Reactors
          David J. Leak
        Reference                                  319  (1)
    Chapter 12 Enzyme Biotransfonnations and       320  (27)
    Reactors
          David J. Leak
          Xudong Feng
          Emma A.C. Emanuelsson
        12.1 Introduction                          320  (2)
        12.2 Applied Biocatalysis and              322  (1)
        Biotransformation
        12.3 Features of Enzymes Useful for        323  (1)
        Applied Biocatalysis
        12.3.1 Enzyme Kinetics                     324  (1)
        12.3.2 Enzyme Specificity and Competing    325  (1)
        Substrates
        12.3.3 Reversibility and Equilibrium       326  (1)
        12.4 Applications of Biocatalysis          327  (1)
        12.4.1 Whole Cell Biocatalysis             327  (1)
        12.4.2 Free and Immobilized Enzyme         330  (1)
        Biocatalysis
        12.4.3 The Co-factor Problem               333  (1)
        12.5 Exploiting the Power of Enzyme        334  (2)
        Evolution
        12.6 Enzyme Immobilization                 336  (1)
        12.6.1 Immobilization Methods              336  (1)
        12.6.2 Enzyme Functional Groups for        338  (1)
        Immobilization
        12.7 Enzyme Bioreactors                    339  (1)
        12.7.1 Conventional Enzymatic Reactor      339  (1)
        12.7.2 Process Intensification             341  (2)
        12.8 Conclusions                           343  (1)
        References                                 343  (4)
    Chapter 13 Bioelectrochemical Systems          347  (18)
          Uwe Schr?der
        13.1 Introduction                          347  (1)
        13.2 A Major Driving Force                 348  (1)
        13.3 Microbe-Electrode Interactions        349  (1)
        13.3.1 Electroactive Biofilms              352  (2)
        13.4 Electrodes for Bioelectrochemical     354  (2)
        Systems
        13.5 Types of Bioelectrochemical Systems   356  (1)
        13.5.1 Microbial Fuel Cells                356  (1)
        13.5.2 Microbial Electrolysis Cells,       358  (1)
        Microbial Desalination Cells and beyond
        13.5.3 Microbial Electrosynthesis          360  (1)
        References                                 360  (5)
    Chapter 14 Fermentations and Sustainable       365  (23)
    Technologies: From Free Enzymes to Whole
    Cells, from Fine Chemicals to Bulk
    Commodities
          Pablo Dominguez de Maria
        14.1 Introduction: White Biotechnology     365  (2)
        14.2 Use of Isolated Enzymes in            367  (10)
        Chemical Processes
        14.3 Use of Whole Cells as                 377  (5)
        Biocatalysts: From Fine Chemicals to
        Bulk Commodities
        14.4 Beyond: Metabolic Engineering         382  (3)
        14.5 Conclusions                           385  (1)
        References                                 385  (3)
    Chapter 15 Sustainability of Biocatalytic      388  (37)
    Processes
          Deepika Malhotra
          Joyeeta Mukherjee
          Munishwar N. Gupta
        15.1 Introduction                          388  (1)
        15.2 Parameters for Measuring              389  (3)
        Sustainability
        15.3 Choice of Reaction Medium from        392  (2)
        Sustainability Perspective
        15.4 Biocatalyst Engineering               394  (2)
        15.5 Microwave Assisted Biocatalysis       396  (4)
        15.6 Ultrasonoenzymology400  (1)
        15.7 Exploiting Extremophiles              401  (1)
        15.7.1 Thermophiles and Alkalophiles as    401  (1)
        Sources of Enzymes
        15.7.2 Psychrophiles as a Source of        402  (1)
        Enzymes
        15.8 Applications of Biocatalysis in       403  (1)
        Chemical and Biochemical Processes
        15.8.1 Industrial Enzymology and           403  (1)
        Enzymes in Organic Synthesis
        15.8.2 Biorefineries                       407  (1)
        15.8.3 Valorization of Waste Products      407  (3)
        15.9 Conclusions                           410  (1)
        Acknowledgements                           411  (1)
        References                                 411  (14)
  Extractions and Preparations
    Chapter 16 Biofuels from Microalgae            425  (18)
          Christopher J. Chuck
          Jonathan L. Wagner
          Rhodri W. Jenkins
        16.1 Introduction                          425  (1)
        16.2 Lipid Derived Algal Fuels             426  (1)
        16.2.1 Hydroprocessing of Algal Lipids     427  (1)
        16.2.2 Lipid Processing                    429  (1)
        16.2.3 Economics of Algal Lipid            429  (1)
        Production
        16.3 Thermochemical Conversion of Whole    430  (1)
        Algal Biomass
        16.3.1 Pyrolysis                           431  (1)
        16.3.2 Hydrothermal Liquefaction           432  (1)
        16.3.3 Bio-oil Upgrading                   434  (1)
        16.3.4 Pre-treatment and Co-product        436  (1)
        Extraction
        16.3.5 Nutrient Recycling                  437  (1)
        16.4 Future Research Perspective           438  (1)
        References                                 439  (4)
    Chapter 17 Ocean Resources for the             443  (18)
    Production of Renewable Chemicals and
    Materials
          Francesca M. Kerton
        17.1 Introduction                          443  (2)
        17.2 Chemicals and Materials from          445  (1)
        Oceanic Biomass
        17.2.1 Non-Cellulosic Carbohydrates        445  (1)
        17.2.2 Minerals                            453  (2)
        17.3 Conclusions                           455  (1)
        References                                 455  (6)
Part C: Separations and Purifications
  Chapter 18 Overview of Separations,              461  (6)
  Purifications and Fractionations
          Darrell Alec Patterson
      18.1 Separations, Purifications and          461  (2)
      Fractionations in Chemical Processing
      18.2 Overview of Separations in this Book    463  (2)
      References                                   465  (2)
  Chapter 19 Membrane Separations: from            467  (36)
  Purifications, Minimisation, Reuse and
  Recycling to Process Intensification
          Darrell Alec Patterson
          Christopher John Davey
          Rosiah Rohani
      19.1 Introduction                            467  (2)
      19.2 Membrane Separation Basics              469  (13)
        19.2.1 Membrane System Definitions         469  (5)
        19.2.2 The Different Membrane Processes    474  (1)
        19.2.3 Relationships between Driving       475  (3)
        Forces and Membrane Processes
        19.2.4 Solute and Solvent Transport and    478  (4)
        Selectivity Mechanisms
      19.3 Overview of Applications of             482  (6)
      Membranes in Chemical Processing
        19.3.1 Desalination by Reverse Osmosis     482  (1)
        19.3.2 High Value Molecule Recovery        483  (1)
        19.3.3 Fractionations                      484  (1)
        19.3.4 Solvent Exchange by Diafiltration   485  (1)
        19.3.5 Upgrading of Liquid Streams         486  (1)
        19.3.6 Wastewater Treatment                486  (1)
        19.3.7 Membrane Enhanced Reactors          487  (1)
      19.4 Case Study I: Concentration of          488  (4)
      Dilute Organics from Fermentations
        19.4.1 Fermentation and the Downstream     488  (1)
        Recovery of Organics
        19.4.2 Nanofiltration and Reverse          489  (1)
        Osmosis Processes
        19.4.3 Pervaporative Separation            490  (1)
        19.4.4 Membrane Materials for              491  (1)
        Fermentative Separations
      19.5 Case Study II: Separation of            492  (5)
      Incompatible Reaction Systems
        19.5.1 The Challenge of Incompatible       492  (1)
        Catalysts
        19.5.2 Dynamic Kinetic Resolution          493  (1)
        19.5.3 Membrane Enhanced Dynamic           494  (3)
        Kinetic Resolution
      19.6 Conclusions                             497  (1)
      References                                   497  (6)
  Chapter 20 Liquid-Liquid Extraction              503  (49)
          Stephen Talton
          Teresa Moreno
      20.1 Introduction                            503  (5)
        20.1.1 Industrial Applications of LLE      505  (2)
        20.1.2 Current Trends in LLE               507  (1)
      20.2 LLE Fundamentals                        508  (25)
        20.2.1 Solvent Selection                   510  (11)
        20.2.2 Contacting                          521  (5)
        20.2.3 Phase Separation                    526  (1)
        20.2.4 Solvent and Product Recovery        527  (6)
      20.3 Recovery of Organics from Aqueous       533  (9)
      Systems
        20.3.1 Extraction of Biofuels from         534  (4)
        Fermentation Broths
        20.3.2 Extraction of Biochemicals from     538  (4)
        Fermentation Broths
      20.4 Conclusions                             542  (1)
      References                                   543  (9)
  Chapter 21 Ionic Liquids and their               552  (30)
  Application to a More Sustainable Chemistry
          Katharina Bica
      21.1 Introduction                            552  (4)
        21.1.1 Ionic Liquids: Facts and Figures    553  (2)
        21.1.2 Ionic Liquids and Green Chemistry   555  (1)
      21.2 Ionic Liquids for Biomass Processing    556  (7)
        21.2.1 Cellulose Dissolution with Ionic    557  (1)
        Liquids
        21.2.2 Fractionation of Lignocellulosic    558  (3)
        Biomass
        21.2.3 Extraction of Valuable              561  (2)
        Ingredients from Biomass
      21.3 Ionic Liquids as Innovative Fluids      563  (6)
      in Catalysis
        21.3.1 Liquid Phase Processing             563  (3)
        21.3.2 Solid Supported Ionic Liquids:      566  (3)
        The SILP Concept
      21.4 Separation Processes: From Flue Gas     569  (4)
      Cleaning to De-mercurization
      21.5 Conclusions                             573  (1)
      References                                   574  (8)
  Chapter 22 Gas Separations using Ionic Liquids   582  (21)
          Leila Moura
          Catherine C. Santini
          Margarida F. Costa Gomes
      22.1 Introduction                            582  (6)
      22.2 Gas Solubility                          588  (2)
      22.3 Ethane and Propane Solubility           590  (3)
      22.4 Ethylene and Propylene Solubility       593  (3)
      22.5 Acetylene and Methyl Acetylene          596  (1)
      Solubility
      22.6 Selectivity and Performance             597  (2)
      22.7 Conclusions                             599  (1)
      References                                   600  (3)
  Chapter 23 The Application of Supercritical      603  (25)
  Carbon Dioxide Extraction of Functional
  Compounds
          Ray Marriott
      23.1 Introduction                            603  (2)
      23.2 Renewable and Sustainable Sources of    605  (2)
      Carbon Dioxide
      23.3 Extraction using Liquid and             607  (3)
      Supercritical Carbon Dioxide
        23.3.1 Supercritical Carbon Dioxide        607  (3)
      23.4 Extraction of Oleochemicals             610  (2)
      23.5 Extraction of Terpenoids                612  (5)
      23.6 Extraction of Alkaloids                 617  (2)
      23.7 Extraction of Metals                    619  (3)
      23.8 Conclusions                             622  (1)
      References                                   622  (6)
  Chapter 24 Sustainable Mining, Metals            628  (49)
  Processing and Recovery
          Justin Salminen
          Sami Virolainen
          Paivi Kinnunen
          Olli Salmi
      24.1 Introduction                            628  (2)
      24.2 Sustainable Mining                      630  (11)
        24.2.1 Mining Wastes                       630  (3)
        24.2.2 Water in Mining Operations          633  (2)
        24.2.3 Effluent Discharge Regulations      635  (2)
        24.2.4 Water Reuse and Recycling           637  (1)
        24.2.5 Flotation                           637  (4)
      24.3 Sustainable Processing                  641  (23)
        24.3.1 Recovery of Metals from Solutions   641  (2)
        24.3.2 Leaching                            643  (3)
        24.3.3 Precipitation and Cementation       646  (3)
        24.3.4 Solvent Extraction                  649  (5)
        24.3.5 Ion Exchange                        654  (7)
        24.3.6 Recycling of Metals from            661  (3)
        Secondary Raw Materials
      24.4 Conclusions                             664  (1)
      References                                   665  (12)
Part D: Process Integration
  Chapter 25 Process Integration: An Overview      677  (4)
          Rafiqul Gani
      25.1 Process Integration and                 677  (3)
      Sustainability
      References                                   680  (1)
  Chapter 26 Process Control for Sustainable       681  (17)
  Processes with respect to Exergy
          M.T. Munir
          W. Yu
          B.R. Young
      26.1 Introduction                            681  (1)
      26.2 Background                              682  (6)
        26.2.1 Process Design                      682  (1)
        26.2.2 Process Control                     682  (1)
        26.2.3 Sustainability                      683  (3)
        26.2.4 Integration of Process Design,      686  (2)
        Control and Sustainability
      26.3 Sustainable Process Control             688  (3)
        26.3.1 Relative Exergy Array (REA)         688  (1)
        26.3.2 Exergy Eco-efficiency Factor        689  (1)
        (EEF)
        26.3.3 Relative Exergy Destroyed Array     690  (1)
        (REDA)
      26.4 Case Study                              691  (3)
      26.5 Summary                                 694  (1)
      26.6 Conclusions                             694  (1)
      References                                   695  (3)
  Chapter 27 Systematic Computer Aided             698  (54)
  Framework for Process Synthesis, Design and
  Intensification
          Rafiqul Gani
          Deenesh K. Babi
      27.1 Introduction                            698  (4)
      27.2 Concepts for Phenomena-based            702  (4)
      Synthesis
        27.2.1 Phenomena Building Blocks           703  (1)
        27.2.2 From Flow Sheet to Phenomena        703  (1)
        Building Blocks
        27.2.3 Combination of PBBs to form SPBs    704  (2)
      27.3 Process Synthesis-Intensification:      706  (4)
      Problem Definition and Mathematical
      Solution Approach
        27.3.1 Process                             706  (1)
        Synthesis-Intensification Problem
        Definition
        27.3.2 Mathematical Description of the     706  (1)
        Synthesis-Intensification Problem
        27.3.3 Solution Technique                  707  (1)
        27.3.4 Conceptual Example                  708  (2)
      27.4 Computer-Aided Framework                710  (13)
        27.4.1 The Synthesis-Intensification       710  (7)
        Framework
        27.4.2 Methods and Tools used in the       717  (6)
        Synthesis-Intensification Framework
      27.5 Case Study                              723  (27)
        27.5.1 Step S1: Need Identification        724  (1)
        27.5.2 Step S2: Problem and Fobi           724  (1)
        Definition
        27.5.3 Step S3: Reaction                   725  (1)
        Identification/ Selection
        27.5.4 Step S4: Design Available?          725  (1)
        27.5.5 Step S5: Feasibility of Existing    725  (1)
        Base Case Design
        27.5.6 Step 7: Perform Rigorous            725  (1)
        Simulation
        27.5.7 Step 8: Economic, Sustainability    726  (2)
        and LCA Analysis
        27.5.8 IT-PBS 1: Process Analysis          728  (2)
        27.5.9 IT-PBS 2: Identification of         730  (2)
        Desirable Tasks and PBBs
        27.5.10 IT-PBS 3: Generation of            732  (18)
        Feasible Flow Sheet Alternatives
      27.6 Conclusions and Future Perspectives     750  (1)
      References                                   750  (2)
Subject Index                                      752
 

[关闭窗口]