当前位置: 首页新书简介 › 机械/能源/化工

Semiconductor Nanowires : From Next-Generation Electronics to Sustainable Energy

作者: Wei Lu , Jie Xiang 出版社: Royal Society Of Chemistry
ISBN: 9781849738156分类号: TB383 /S471
出版时间: 2014-12-05有407人浏览

Semiconductor Nanowires : From Next-Generation Electronics to Sustainable Energy

[Book Description]

Semiconductor nanowires were initially discovered in late 90's and since then there has been an explosion in the research of their synthesis and understanding of their structures, growth mechanisms and properties. The realisation of their unique electrical, optical and mechanical properties has led to a great interest for their use in electronics, energy generation and storage. This book provides a timely reference on semiconductor nanowires including an introduction to their synthesis and properties and specific chapters focusing on the different applications including photovoltaics, nanogenerators, transistors, biosensors and photonics. This is the first book dedicated to Semiconductor Nanowires and provides an invaluable resource for researchers already working in the area as well as those new to the field. Edited by leading experts in the field and with contributions from well-known scientists, the book will appeal to both those working on fundamental nanomaterial research and those commercially interested in their applications.

[Table of Contents]
Chapter 1 Semiconductor Nanowire Growth and    1  (53)
    Integration
          Lin Chen
          Wei Lu
          Charles M. Lieber
      1.1 Introduction                             1  (1)
      1.2 Basics of Nanocluster-Mediated VLS       2  (4)
      Nanowire Growth
      1.3 Nanowire Growth Dynamics                 6  (9)
      1.4 Nanowire Heterostructures                15 (6)
        1.4.1 Radial Nanowire Heterostructure      17 (1)
        1.4.2 Axial Nanowire Heterostructure       18 (3)
      1.5 In Situ Doping of Nanowires              21 (14)
      1.6 Beyond Individual Nanowire Growth        35 (9)
        1.6.1 Growth Site Control                  35 (2)
        1.6.2 Branched Nanowires                   37 (1)
        1.6.3 Kinked Nanowires                     37 (2)
        1.6.4 Connecting the Nanowires Together    39 (5)
      1.7 Summary                                  44 (10)
        References                                 45 (9)
    Chapter 2 High Performance, Low Power          54 (57)
    Nanowire Transistor Devices
          Jie Xiang
          Ji Hun Kim
          Wei Lu
      2.1 Introduction                             54 (1)
      2.2 Nanowires as High Performance Field      55 (14)
      Effect Transistors
        2.2.1 Nanowire Transistors                 55 (8)
        2.2.2 One-Dimensional Device Physics in    63 (1)
        the Quantum Confinement Regime
        2.2.3 Scaling of High-Performance          64 (5)
        Nanowire Transistors
      2.3 Large-Scale Construction of Nanowire     69 (8)
      Circuits
        2.3.1 Assembly and Fabrication             69 (4)
        Techniques
        2.3.2 Integrated Nanowire Circuit          73 (2)
        Architecture
        2.3.3 Challenge and Outlook of             75 (2)
        High-Performance Nanowire Circuits
      2.4 Nanowire Devices for Low Power           77 (22)
      Computing
        2.4.1 Static Power Consumption and         78 (1)
        Sub-threshold Swing
        2.4.2 Breaking Through the                 79 (3)
        Thermodynamic Limit: Tunneling and
        Impact Ionization Transistors
        2.4.3 Breaking Through the                 82 (7)
        Thermodynamic Limit:
        Nano-electromechanical Switches
        2.4.4 Nanoelectromechanical Field          89 (7)
        Effect Transistors (NEMFET) with
        Suspended Nanowires
        2.4.5 Scaling and Challenges of NEMFET     96 (3)
      2.5 Conclusion                               99 (12)
        References                                 100(11)
    Chapter 3 Nanowire Phase-Change Memory         111(56)
          Pavan Nukala
          Ritesh Agarwal
      3.1 Introduction                             111(5)
        3.1.1 What is Phase-Change Memory and      111(3)
        Why Use it?
        3.1.2 Evolution of PCM Technology:         114(2)
        Historical Timeline
      3.2 Phase-Change Materials: General          116(5)
      Aspects of Structure in Crystalline Phase
        3.2.1 Guidelines for the Design of         119(2)
        Phase-Change Materials
      3.3 Scaling Studies on Phase-Change          121(13)
      Memory: Reduced Dimensions and the Rise
      of Bottom up Processing
        3.3.1 Device Failure Mechanisms:           123(2)
        Electromigration
        3.3.2 Bottom up Synthesis of Various       125(5)
        Nanowire Phase-Change Memory Systems
        3.3.3 Scaling Studies on Nanowire          130(3)
        Phase-Change Memory
        3.3.4 Phase-Change Nanotubes and           133(1)
        Nanocrystals: Pushing the Ultimate Size
        Limit for Phase-Change Memory Device
        Operation
      3.4 Multilevel Switching: Core/Shell         134(2)
      Nanowire Phase-Change Memory
      3.5 Stability of the Amorphous Phase of      136(6)
      Phase-Change Materials
        3.5.1 Data Retention in Phase-Change       136(2)
        Memory Nanowire Devices
        3.5.2 Studies on Drift Behavior in the     138(4)
        Amorphous Phase of Phase-Change
        Materials
      3.6 Mechanism of Crystal-to-Amorphous        142(15)
      Phase-Change: A Closer Look
        3.6.1 Structure of Crystalline             146(1)
        Ge2Sb2Te5: Salient Features
        3.6.2 Visualizing the Structural           147(9)
        Changes During Amorphization
        3.6.3 Future Directions: Melt-Quench or    156(1)
        Purely Solid-State Transformation?
      3.7 Additional Applications of               157(1)
      Phase-Change Materials
      3.8 Summary and Outlook                      157(10)
        References                                 158(9)
    Chapter 4 Nanowire Biosensors                  167(33)
          John Zimmerman
          Bozhi Tian
      4.1 Introduction: Interfacing to             167(9)
      Biological Systems
        4.1.1 Why Build and Understand             167(1)
        Interfaces Between
        Nanoelectronic-Biological Systems?
        4.1.2 Why Nanowire Sensors?                168(8)
      4.2 Detection Mechanism                      176(9)
        4.2.1 Field Effect Transistor Based        176(4)
        Time Domain Detection
        4.2.2 Short Channel Device, Towards        180(3)
        Localized Sensing and Enhanced
        Sensitivity
        4.2.3 Debye Screening and Potential        183(2)
        Solutions
      4.3 Biosensor Applications                   185(9)
        4.3.1 Traditional Applications             185(2)
        4.3.2 Nanowire Sensors for Biophysical     187(3)
        Studies
        4.3.3 Nanowire Sensors for Cellular        190(4)
        Electrical Recording
      4.4 Outlook                                  194(6)
        References                                 195(5)
    Chapter 5 Nanowires for Piezoelectric          200(77)
    Nanogenerators
          Zhong Lin Wang
          Sangmin Lee
          Jinhui Song
          Xudong Wang
          Rusen Yang
          Yong Qin
          Youfan Hu
          Sheng Xu
          Guang Zhu
          Chen Xu
          Minbaek Lee
      5.1 Synthesis of Piezoelectric Nanowires     200(11)
        5.1.1 Nanowire Arrays Grown by             200(2)
        Vapor-Solid-Solid Process
        5.1.2 Nanowire Arrays Grown by             202(3)
        Vapor-Liquid-Solid Process
        5.1.3 Nanowire Arrays Grown by Pulse       205(1)
        Laser Deposition
        5.1.4 Nanowire Arrays Grown by Chemical    206(5)
        Approach
      5.2 Fundamental Principle of Nanogenerator   211(9)
        5.2.1 Concept of Piezoelectric             211(2)
        Nanogenerators
        5.2.2 Schottky Barrier at the              213(2)
        Electrode-Nanowire Interface
        5.2.3 Charge Generation and Output         215(2)
        Processes
        5.2.4 Principle of the Piezoelectric       217(3)
        Nanogenerator
        5.2.5 Nanogenerator Based on Other         220(1)
        Wurtzite Structured Nanowires
      5.3 Characteristics of Single Wire Based     220(7)
      Nanogenerator
        5.3.1 Basic Design                         220(1)
        5.3.2 Characterization of Nanogenerator    221(4)
        Outputs
        5.3.3 Effect of Straining Rate             225(1)
        5.3.4 Principle of the Single Wire         225(2)
        Based Nanogenerator
      5.4 Energy Conversion Efficiency             227(1)
      5.5 Nanogenerators Made of Nanowire Arrays   228(26)
        5.5.1 Schottky Contact Based Vertical      228(10)
        Nanowires
        5.5.2 Schottky Contact Based Lateral       238(5)
        Nanowires
        5.5.3 Insulating Layer Based               243(11)
        Nanogenerators
      5.6 Nanogenerators for Self-powered          254(7)
      Systems
        5.6.1 Concept of Self-powered System       255(1)
        5.6.2 Self-powered Photon Sensor and       255(3)
        System
        5.6.3 Self-powered Environmental Sensor    258(3)
        System
      5.7 Nanogenerators as Self-powered Active    261(10)
      Sensors
        5.7.1 Tire Pressure/Speed and              261(2)
        Transportation
        5.7.2 Detection of Ambient                 263(4)
        Wind-Velocity and Cantilever Vibration
        Frequency
        5.7.3 Weight Measurement                   267(1)
        5.7.4 Skin Deformation Detection and       267(4)
        Eye Ball Motion Tracking
      5.8 Perspectives                             271(6)
        Acknowledgements                           273(1)
        References                                 273(4)
    Chapter 6 Nanowires for Photovoltaics and      277(35)
    Artificial Photosynthesis
          Peidong Yang
          Sarah Brittman
          Chong Liu
      6.1 Introduction                             277(1)
      6.2 Principles of Photovoltaics              278(2)
      6.3 Principles of Artificial                 280(2)
      Photosynthesis
      6.4 Nanowires for Solar Energy               282(6)
      Conversion: Commonalities between
      Photovoltaics and Artificial
      Photosynthesis
        6.4.1 Charge Collection and Transport      283(3)
        6.4.2 Light Trapping in Nanowire Arrays    286(1)
        6.4.3 Approaches for Reducing Costs        287(1)
      6.5 Single-Nanowire Photovoltaics            288(3)
        6.5.1 Transport within Single-Nanowire     288(1)
        Solar Cells
        6.5.2 Optical Properties of Single         289(2)
        Nanowires
      6.6 Nanowires for "Z-scheme" Artificial      291(3)
      Photosynthesis: Electrochemical
      Considerations
        6.6.1 Stability against Photocorrosion     291(1)
        6.6.2 Principles of System Design          291(3)
      6.7 Progress in Nanowire Photovoltaics       294(10)
      and Artificial Photosynthesis
      6.8 Future Outlook                           304(8)
        References                                 305(7)
    Chapter 7 Growth of Metal Silicide             312(51)
    Nanowires and Their Spintronic and
    Renewable Energy Applications
          Ankit Pokhrel
          John P. DeGrave
          Dong Liang
          Jeremy M. Higgins
          Song Jin
      7.1 Introduction                             312(5)
      7.2 Silicide Nanowire Growth Methods         317(16)
        7.2.1 Silicidation of Silicon Nanowires    317(3)
        7.2.2 Delivery of Silicon to Metal Films   320(1)
        7.2.3 Reactions of Transition Metal        321(2)
        Sources with Silicon Substrates
        7.2.4 Simultaneous Metal and Silicon       323(5)
        Delivery
        7.2.5 Solution Growth Technique            328(2)
        7.2.6 Silicide Nanowire Growth             330(3)
        Technique Comparison
      7.3 Spintronic Applications and Skyrmion     333(14)
      Physics of Silicide Nanowires
        7.3.1 Overview and Theoretical             334(3)
        Understanding of Chiral Magnetism and
        Skyrmion Magnetic Ordering
        7.3.2 Potential Spintronic Applications    337(2)
        of Nanowires with Skyrmion Magnetic
        Domains
        7.3.3 Observations of Exotic Spin          339(3)
        Textures
        7.3.4 Electrical Transport Signature of    342(4)
        Magnetic Skyrmions
        7.3.5 Spin Polarization Measurements on    346(1)
        NWs by Andreev Reflection Spectroscopy
      7.4 Thermoelectric Applications of           347(2)
      Silicide Nanowires
      7.5 Nanoelectronics and Field-Emission       349(1)
      Applications
      7.6 Solar Energy Conversion and Energy       350(1)
      Storage
      7.7 Summary and Perspective                  351(12)
        References                                 352(11)
    Chapter 8 Nanowires for High-Performance       363(37)
    Li-Ion Battery Electrodes
          Matthew T. McDowell
          Yi Cui
      8.1 Introduction                             363(5)
      8.2 Silicon Nanowires as a High              368(3)
      Performance Anode Material
      8.3 Nanoscale Engineering for Silicon        371(9)
      Electrodes with Long Cycle Life
        8.3.1 One-Dimensional Scaffolding for      371(1)
        Silicon Deposition
        8.3.2 Silicon Nanotubes and Other          372(4)
        Hollow Structures
        8.3.3 Successful Electrode Designs         376(2)
        Based on Other Nanostructures
        8.3.4 Improving Cycle Life by Modifying    378(1)
        the Electrolyte
        8.3.5 Novel Nanowire-Based Electrode       378(2)
        Architectures
      8.4 Understanding Lithiation/Delithiation    380(11)
      in Nanostructured Silicon
        8.4.1 In Situ TEM Experimental Setup       380(2)
        8.4.2 Lithiation and Cycling Reaction      382(2)
        Mechanisms
        8.4.3 Anisotropic Lithiation and           384(1)
        Expansion
        8.4.4 Fracture of Crystalline Silicon      385(4)
        Nanostructures during Lithiation
        8.4.5 Other Insights from In Situ TEM      389(2)
        Experiments
      8.5 Nanowire Electrodes of Other Battery     391(2)
      Materials
        8.5.1 Other Alloying Anode Materials       392(1)
        8.5.2 Materials that Undergo Conversion    392(1)
        Reactions
        8.5.3 Materials that Undergo               392(1)
        Intercalation Reactions
      8.6 Conclusions                              393(7)
        References                                 393(7)
    Chapter 9 Phononic and Electronic              400(38)
    Engineering in Nanowires for Enhanced
    Thermoelectric Performance
          Edward Dechaumphai
          Jaeyun Moon
          Matthew C. Wingert
          Renkun Chen
      9.1 Overview: Scope of the Chapter           400(1)
      9.2 Introduction to Thermoelectrics          401(5)
      9.3 Phonon Transport Length Scales           406(2)
      9.4 Synthesis of Thermoelectric Nanowires    408(5)
        9.4.1 Chemical Vapor Deposition            408(1)
        9.4.2 Template-Assisted Synthesis          409(1)
        9.4.3 Solution Process                     410(2)
        9.4.4 Top-Down Process                     412(1)
      9.5 Thermal Conductivity of Semiconductor    413(11)
      Nanowires
        9.5.1 Thermal Conductivity Measurements    413(4)
        of Thermoelectric Nanowires
        9.5.2 Thermal Conductivity of Si           417(7)
        Nanowires
      9.6 Power Factor of Semiconductor            424(3)
      Nanowires
      9.7 Nanowire-Based Thermoelectric Devices    427(2)
      9.8 Summary and Outlook                      429(9)
        Acknowledgements                           432(1)
        References                                 432(6)
Subject Index                                      438

[关闭窗口]